
THE NEF CONE OF THE HILBERT SCHEME OF POINTS ON
RATIONAL ELLIPTIC SURFACES AND THE CONE CONJECTURE

JOHN KOPPER

Abstract. We compute the nef cone of the Hilbert scheme of points on a general rational
elliptic surface. As a consequence of our computation, we show that the Morrison-Kawamata
cone conjecture holds for these nef cones.

1. Introduction

The Morrison-Kawamata cone conjecture gives a description of the nef cone of Calabi-Yau
varieties in terms of the automorphism group of the variety. A more general conjecture was
formulated for klt Calabi-Yau pairs in [T1] and proven in [T2] for 2-dimensional varieties. The
conjecture states that there is a rational polyhedral fundamental domain for the action of the
automorphism group on the nef cone. In this paper we prove that the Morrison-Kawamata
cone conjecture holds for Hilbert schemes of points on rational elliptic surfaces. This fact
was first shown for the underlying rational elliptic surface by Grassi-Morrison [GM]. This
work is based on part of the author’s Ph.D. thesis [K].

The heart of this paper is in giving a precise compuation of the nef cone of Hilbert schemes
of points on rational elliptic surfaces. Such surfaces behave similarly to del Pezzo surfaces,
for which the nef cones of Hilbert schemes have already been described [BC] [BHL+]. The
argument in [BHL+] uses Bridgeland stability techniques and the Bayer-Macr̀ı positivity
lemma [BM]. We adopt this approach and will use many of techniques developed in [BHL+].

By a rational elliptic surface we mean a smooth, rational, complex projective surface X
admitting a map X → P1 whose general fiber is a smooth elliptic curve. The general such
surface may be obtained as the blow-up of P2 at the nine base points of a general cubic pencil.

For any smooth surface X, we will denote by X [n] the Hilbert scheme of n points on X
parameterizing length-n subschemes of X. By Fogarty’s theorem [F1], X [n] is smooth and
irreducible of dimension 2n. We describe Nef(X [n]) dually by describing the cone of curves
NE(X [n]).

The natural map

X [n] → X(n)

called the Hilbert-Chow morphism is a resolution of singularities. Let C0 denote the class of a
curve contracted by the Hilbert-Chow morphism. Any curve C ⊂ X admitting a g1n induces
a rational curve C[n] ⊂ X [n] whose points parameterize the fibers of the corresponding map
C → P1. Our main theorem can then be stated as follows.
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Theorem 1.1. Let X be a general rational elliptic surface and n ≥ 3 an integer. Then the
cone of curves NE(X [n]) is spanned by the classes E[n] for all (−1)-curves E ⊂ X, the curve
F[n], where F is the class of an elliptic fiber, and the class C0.

There are infinitely many (−1)-curves on X, but they fall into single orbit of the action
of the Weyl group [L]. Furthermore, there is a rational polyhedral fundamental domain
for the action of Aut(X) on NE(X) [GM]. Assuming this description of NE(X), Theorem
1.1 describes NE(X [n]) completely. As a consequence, we show that there is a fundamental
domain for the action of the automorphism group on the nef cone and deduce that the
Morrison-Kawamata cone conjecture also holds for Nef(X [n]) (Corollary 3.5).

Acknowledgments. The author is grateful to Izzet Coskun and Tim Ryan for their many
helpful conversations.

2. Preliminaries

We will work over the field of complex numbers. In this section we collect a number of
facts required for our calculation of the nef cone. Let X be a smooth projective surface with
q(X) = 0. Then by [F2] we have ρ(X [n]) = ρ(X) + 1 and the Picard group of X [n] can be
described as follows. Given a divisor D on X, define the divisor D[n] on X [n] by

D[n] =
{
Z ∈ X [n] : D ∩ Z 6= ∅

}
.

Let h : X [n] → X(n) = (X ×X × · · · ×X)/Sn denote the Hilbert-Chow morphism sending a
length n scheme to its support. The exceptional locus of h is a divisor which we denote B
and it parameterizes nonreduced schemes. Then we have

Pic(X [n]) ∼= Pic(X)⊕ Z
B

2
,

where Pic(X) embeds into Pic(X [n]) by D 7→ D[n].
We introduce a few curve classes on X [n]. We denote by C0 the class of a curve contracted

by h. If C ⊂ X is a curve that admits a g1n, i.e., a degree n map to P1, then the fibers of this
map induce a rational curve C[n] on X [n]. The following intersection numbers are standard:

D[n] B

C[n] C ·D 2g(C)− 2 + 2n

C0 0 −2

Note that any divisor on X [n] that has nonnegative intersection with C0 and C[n] for every
effective curve C must have nonpositive coefficient in B.

2.1. Background on Bridgeland stability. The technical core of this paper uses Bridge-
land stability conditions for derived categories. We will not need the full strength of
Bridgeland’s results, so we refer the reader to Bridgeland’s papers [Br1][Br2] for more details.
We also suggest Huizenga’s survey [H] for more background on Bridgeland stability conditions
and their relationship to moduli spaces of sheaves.

Let X be a smooth projective surface and fix a polarization A ∈ Pic(X) ⊗ Q. Let
P ∈ Pic(X) ⊗ Q be any Q-divisor. The (P -)twisted Chern character is defined as chP =
exp(−P ) ch.
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We define the µA,P -slope to be the function

µA,P =


A · chP1
A2 chP0

chP0 6= 0

+∞ chp0 = 0.

The (A,P )-twisted discriminant is defined as

∆A,P =
1

2
µ2
A,P −

chP2
A2 chP0

.

Arcara-Bertram [AB] construct a family of stability conditions called the (A,P )-slice.
Explicitly, let s ∈ R and define a category

As = 〈Fs[1],Qs〉,
where

Fs = {F ∈ Coh(X) : F is torsion-free and µA,P (F ′) ≤ s for all proper subsheaves F ′ of F}
Qs = {Q ∈ Coh(X) : Q is torsion or µA,P (Q′) > s for all quotients Q′ of Q}.
For s ∈ R and t ∈ R>0, the central charge Zs,t is defined as the homomorphism Z : K0(X)→ C
given by

Z(v) = − chP+sA
2 +

t2A2

2
chP+sA

0 +iA · chP+sA
1 .

The µs,t-slope of an object E ∈ As is defined as the number

µs,t(E) = −<Zs,t(E)

=Zs,t(E)
.

Then Arcara-Bertram show in [AB] that the pair (As, Zs,t) is a Bridgeland stability condition.
Moreover, for a fixed Chern character v ∈ K0(X), the upper half-plane {(s, t) : t > 0}
(identified with the (A,P )-slice) admits a wall-and-chamber decomposition such that stable
objects of Chern character v cannot destabilize unless a wall is crossed. Maciocia showed
in [M] that these walls are either the vertical line s = µA,P (v) or nested semicircles. A
semicircular wall W1 is contained in a semicircular wall W2 if and only if the center of W1 is
to the left of the center of W2.

The following lemma collects some standard facts about the stability conditions in the
(A,P )-slice.

Lemma 2.1. With notation as above, we have the following.

(1) If E is a sheaf in As and F → E is a destabilizing object in As, then F is a sheaf.
(2) For t � 0, the Bridgeland moduli space of (As, Zs,t)-semistable objects with Chern

character v equals the (A,P )-twisted moduli space of Gieseker semistable sheaves with
Chern character v.

(3) Given objects E and F in As, the numerical wall W (E,F ) in the (A,P )-slice consisting
of stability conditions for which E and F have the same µs,t-slope has center s0 and
radius ρ satisfying

s0 =
1

2
(µA,P (E) + µA,P (F ))− ∆A,P (E)−∆A,P (F )

µA,P (E)− µA,P (F )

ρ2 = (µA,P (E)− s0)2 − 2∆A,P (E).
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In particular, if IZ is the ideal sheaf of a length n scheme and E = L ⊗ IZ′ for
some line bundle L and 0-dimensional scheme Z ′ of length m, then the center s0 of
W (E, IZ) is given by

s0 =
n−m+ L2

2
− L·P

2

−L · A
.

Of particular interest to us is the case v = (1, 0,−n) for n ∈ Z>0. In this case, the Gieseker
moduli space is isomorphic to the X [n] via the map sending an ideal sheaf IZ to the scheme
Z. The largest wall in the (A,P )-slice for v is called the Gieseker wall, and determining it
precisely is the central computation in the proof of Theorem 1.1.

2.2. The Weyl action. Let X be a general rational elliptic surface. We identify X with the
blow-up π : X → P2 of P2 at the nine base points of a general cubic pencil. The π-exceptional
divisors E1, . . . , E9 on X are disjoint sections of the elliptic fibration X → P1. The Picard
group of X is given by

Pic(X) ∼= ZH ⊕ ZE1 ⊕ · · ·ZE9,

where H is the pullback of the hyperplane class via π. The following intersection numbers
are standard:

H2 = 1, H · Ei = 0 for all i, E2
i = −1, Ei · Ej = 0 for i 6= j.

The canonical class of X is KX = −3H + E1 + · · · + E9. We denote by F the class of an
elliptic fiber and note that F = −KX . In particular, KX is antieffective.

Proposition 2.2 ([L]). The cone of curves NE(X) is generated by the fiber class F together
with the classes of all (−1)-curves.

It is well-known that there are infinitely many (−1)-curves on X, but they fall into a single
orbit of the action of the Weyl group as we explain below.

Definition 2.3. The root lattice on X is the orthogonal complement of F in N1(X) with
respect to the intersection pairing. It has an integral basis

B = {E1 − E2, E2 − E3, . . . , E8 − E9, H − E1 − E2 − E3}.

Given an element β ∈ B, there is an automorphism sβ : N1(X)→ N1(X) defined by

sβ(D) = D + (D · β)D.

The group generated by all reflections for β ∈ B is called the Weyl group of X. Note that
the action of the Weyl group preserves intersection numbers: since β2 = −2 for all β ∈ B, we
have

sβ(D) · sβ(D′) = D ·D′ + β2(D · β)(D′ · β) + 2(D · β)(D′ · β) = D ·D′.
It is also clear that the Weyl group fixes the fiber class F .

Lemma 2.4 ([L][BHL+]). Let X be a general rational elliptic surface. Then

(1) The Weyl group of X acts transitively on the set of (−1)-curves in NE(X).
(2) The Weyl group action on the set of extremal rays of Nef(X) has three orbits, repre-

sented by the classes F , H, and H − E1.
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Proof. Statement (1) is in [L]. For statement (2), let D be an extremal nef divisor. Then D
is orthogonal to a face of NE(X), so either D · F = 0 or D ·E = 0 for some (−1)-curve E. If
D · F = 0, then D is parallel to the fiber class, hence is in the orbit of F .

On the other hand suppose D ·E = 0 for some (−1)-curve E. By (1) there is an element of
the Weyl group taking E to E9. Let X → Y be the blow-down of E9. Then Y is the degree
1 del Pezzo surface isomorphic to the blow-up of P2 at 8 general points and D = π∗D′ for an
extremal nef divisor D′ on Y . By [BHL+, Proposition 5.2], D′ is either in the orbit of H or
H − E1 under the action of the Weyl group for Y . �

3. The nef cone

Let X be a general rational elliptic surface. The calculation of Nef(X [n]) follows the method
of [BHL+] and proceeds in roughly two steps. First, we bound Nef(X [n]) by describing an a
priori larger cone Λ that must contain it. Second, we show that every ray of Λ is nef. To
demonstrate their nefness, we exhibit them as Bayer-Macr̀ı divisors. This relies on a choice
of polarization and twisting divisor.

Let Λ ⊂ N1(X [n]) be the cone spanned by all divisor classes that have nonnegative
intersection with F[n], C0, and E[n] for all (−1)-curves E.

Lemma 3.1. The cone Λ is contained in the cone spanned by Nef(X) ⊂ Nef(X [n]) and the
class

(n− 1)F [n] − 1

2
B.

Proof. Let D ∈ Λ. Write D = C [n] − aB where C ∈ Nef(X). If a = 0, then D ∈ Nef(X), so
we assume a > 0. Scaling by Q, we may assume a = 1

2
.

We show that the class C − (n− 1)F is nef on X. It will then follow that

D =
[
C [n] − (n− 1)F [n]

]
+

[
(n− 1)F [n] − 1

2
B

]
exhibits D in the desired cone. We have

(C − (n− 1)F ) · F = C · F ≥ 0

because C is nef. If E is a (−1)-curve, then

(C − (n− 1)F ) · E = C · E − (n− 1).

Since 0 ≤ D · E[n] = C · E − (n− 1), it follows that (C − (n− 1)F ) · E ≥ 0.
On the other hand, by adjunction we have F · E = 1 for all (−1)-curves E, and therefore

that (
(n− 1)F [n] − 1

2
B

)
· E[n] = 0,

and (
(n− 1)F [n] − 1

2
B

)
· C0 = 1,

proving the claim. �

Note that ((n − 1)F [n] − 1
2
B) · F[n] = −n and so (n − 1)F [n] − 1

2
B is not nef. If D ∈ Λ

spans an extremal ray, then there is an extremal ray C of Nef(X) such that D is the unique
F[n]-orthogonal ray in the plane spanned by (n− 1)F [n] − 1

2
B and C [n].
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Notation 3.2. For C ∈ Nef(X), we will write ε(C) ∈ N1(X [n]) to denote the unique
F [n]-orthogonal ray constructed above.

By Lemma 2.4, the extremal ray C of Nef(X) is in the Weyl orbit of F , H, or H − E1.
If C is in the orbit of F , then C = F and D = F [n] which is certainly nef. Thus up to the
Weyl action we may assume C = H or C = H − E1. Computing the F[n]-orthogonal divisor
described above, we have two cases:

ε(H) = (n− 1)F [n] +
n

3
H [n] − 1

2
B

ε(H − E1) = (n− 1)F [n] +
n

2

(
H [n] − E[n]

1

)
− 1

2
B.

To prove the theorem it suffices to show that the above classes are nef because it will follow
that Λ ⊂ Nef(X [n]) (and the other containment is obvious). In order to do so, we invoke the
following theorem from [BHL+].

Theorem ([BHL+, Proposition 3.8]). Let X be a smooth projective surface with irregularity
zero, A an ample divisor, and P an antieffective Q-divisor. Let σ be a stability condition lying
on a numerical wall with center sW in the Gieseker chamber in the (A,P )-slice corresponding
to the Chern character v = (1, 0,−n). Then the divisor

1

2
K

[n]
X − sWA

[n] − P [n] − 1

2
B

is nef on X [n].

In proving Theorem 1.1 we will always choose P = −F . We will work with two polarizations:

A1 =
n

3
H +

(
n− 3

2

)
F

A2 =
n

2
(H − E1) +

(
n− 3

2

)
F.

Lemma 3.3. The classes A1 and A2 are ample on X [n] for n ≥ 2.

Proof. We first consider A1. Since NE(X) = NE(X) is spanned by F and the (−1)-curves E,
it suffices to show that A1 has positive intersection with those classes. We have

A1 · F = n > 0.

If E is a (−1)-curve, then either E = Ei for some i or E = aH −
∑

i=1 biEi for a > 0, bi ≥ 0
for all i. In the first case,

A1 · Ei = n− 3

2
> 0.

In the second case,

A1 · E =
n

3
a+ n− 3

2
> 0.

Finally,

A2
1 =

10n2

9
− 3n

2
> 0.

An analogous calculation shows that A2 is ample. �
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We are now ready to prove the main theorem. The remainder of the argument is to
compute the Gieseker wall in the (A1,−F )-slice and in the (A2,−F )-slice. We will see that
for σ on this wall, we have

1

2
K

[n]
X − sWA

[n]
i + F [n] − 1

2
B =

{
ε(H) if i = 1,

ε(H − E1) if i = 2.

By the theorem of [BHL+], it will follow that ε(H) and ε(H − E1) are nef.

Proof of Theorem 1.1. We first compute the Gieseker wall in the (A1,−F )-slice for the Chern
character v = (1, 0,−n). Let Z be a length n subscheme of X consisting of distinct points
lying on a single elliptic fiber. Then there is an injective map of sheaves

OX(−F )→ IZ .

The corresponding wall W (OX(−F ), IZ) in the (A1,−F )-slice has center

sW =
n+ F 2

2

−F · A1

= −1.

We wish to show that this is the Gieseker wall, i.e., that there is no larger wall destabilizing
an ideal sheaf of the same character. Since the walls for v are nested semicircles, it suffices
to show that the center of any actual wall is larger than −1. Suppose for a contradiction
that there is a map U → IZ corresponding to a larger wall that destabilizes some ideal sheaf
of a length n scheme Z ⊂ X. We distinguish two cases: rk(U) = 1 and rk(U) > 1.

In the first case, we may write U = L⊗ IY , where L is a line bundle and IY is some ideal
sheaf. Then L and U have the same slope and the center of the wall W (U, IZ) is given by

n− `(Y ) + L2

2
− L·P

2

L · A1

,

whereas the center of W (L, IZ) is given by

n+ L2

2
− L·P

2

L · A1

.

Evidently W (L, IZ) is larger than W (U, IZ), and so we may assume U = L without loss of
generality. If −L = Ei for some i, then the wall W (L, IZ) has center

−n− 1

n− 3
2

> −1,

so we assume −L is of the form aH −
∑9

i=1 biEi for a > 0 and bi ≥ 0 for all i. By [BHL+,
Prop 3.5] we may also assume that L is antieffective and that

−L · A1 < A1 · F = n.

If we have furthermore that −L · F ≥ 2, then

−L · A1 ≥
n

3
− L ·H + 2n− 3 > n

when n ≥ 3. We may therefore assume that −L · F ≤ 1. If −L · F = 0 then L is parallel to
F and we are done, so assume that −L · F = 1. We have

−L · A1 =
an

3
+

(
n− 3

2

)
.
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Thus if −L ·A1 < n, we must have a = 0 or a = 1. If a = 0, then −L = Ei for some i, a case
we have already considered. There are three effective classes with a = 1:

(1) −L = H, or
(2) −L = H − Ei for some i, or
(3) −L = H − Ei − Ej for some i 6= j.

Since we have assumed that −L · F = 1, the only possibility is −L = H − Ei − Ej for some
i 6= j. In this case, the center of W (L, IZ) equals

− n− 1
4
3
n− 3

2

> −1.

Thus −L = F corresponds to the largest rank 1 wall.
The second case to consider is rk(U) ≥ 2. By [BHL+, Cor. 3.2], the radius ρ′ of the wall

W (U, IZ) must then satisfy

(ρ′)2 ≤ 2nA2
1 + (A1 · −F )2 − A2

1F
2

8(A2
1)

2
.

On the other hand, the radius ρ of W (OX(−F ), IZ) satisfies

ρ2 = (−1− µA1,−F (IZ))2 − 2∆A1,−F (IZ) = 1 +
3n

A2
1

.

Using that F 2 = 0 and A1 · F = −n, we see that for n ≥ 3 we have ρ2 > (ρ′)2. Thus no such
U gives a larger actual wall and so W (OX(−F ), IZ) is the Gieseker wall. By [BHL+, Prop.
3.8], the class

1

2
K

[n]
X − sWA

[n]
1 + F [n] − 1

2
B = ε(H)

is nef.
The proof of the nefness of ε(H − E2) is similar. We use the polarization A2 and twisting

divisor −F . Again, by arranging the n points of Z on an elliptic fiber we get a map
OX(−F )→ IZ and a corresponding wall with center sW = −1. We show again that there is
no larger wall in the (A2,−F )-slice by separately considering destabilizing sheaves U with
rk(U) = 1 and rk(U) > 1.

As before, if rk(U) = 1, then we may assume without loss of generality that U = L is an
antieffective line bundle. If −L = Ei for some i, then the wall W (L, IZ) has center

−2

3
if i = 1

−n− 1

n− 3
2

if 2 ≤ i ≤ 9.

In either case, W (L, IZ) is smaller than W (OX(−F ), IZ). We therefore assume that
−L = aH −

∑9
i=1 biEi with a > 0 and bi ≥ 0 for all i. We may again assume furthermore by

[BHL+, Prop. 3.5] that

−L · A2 < A2 · F = n.

If −L · F ≥ 2, then

−L · A2 ≥ 2n− 3

2
> n,
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so we assume −L · F = 1 as above. Then,

−L · A2 =
n

2
(a− b1) + n− 3

2
.

Thus if −L ·A2 > n, we must have a = b1. The only effective curve with class aH−aE1−· · ·
is a union of a lines through the blow-down of E1. Since we have also assumed that −L ·F = 1,
we have

2a = 1 +
9∑
i=2

bi.

But a lines through a fixed point can only pass through a additional points (counting
multiplicity), and so

a ≤
9∑
i=2

bi.

Thus a = 1 and consequently −L = H −E1 −Ei for some i > 1. The corresponding wall has
center

−n− 1

n− 3
2

> −1.

We conclude that W (OX(−F ), IZ) is the largest wall corresponding to a rank 1 destabilizing
object.

If rk(U) ≥ 2, then we again apply [BHL+, Cor. 3.2] to see that the radius of W (U, IZ) must
be smaller than the radius of W (OX(−F ), IZ), and thus W (OX(−F ), IZ) is the Gieseker
wall and ε(H − E1) is nef. �

3.1. The cone conjecture. Let X be a Q-factorial variety and ∆ an effective R-divisor on
X. We call (X,∆) a klt Calabi-Yau pair if (X,∆) is klt and KX + ∆ is numerically trivial.
Let Aut(X,∆) denote the group of automorphisms of X that preserve ∆.

Conjecture (Kawamata-Morrison cone conjecture). Let (X,∆) be a klt Calabi-Yau pair.
Then the number of Aut(X,∆)-equivalence classes of faces of the cone Nef(X) ∩ Eff(X)
corresponding to birational contractions or fiber space structures is finite and there exists a
fundamental domain Π for the action of Aut(X,∆) on Nef(X) ∩ Eff(X).

The cone conjecture was shown by Totaro for 2-dimensional klt Calabi-Yau pairs [T2].
Grassi-Morrison exhibited in [GM] an explicit fundamental domain when X is a general
rational elliptic surface. We will use the results of this section and the result of Grassi-
Morrison to show that the conjecture holds for the pair (X [n], F [n]). The main observation is
that enough elements of the Weyl group correspond to actual automorphisms of X.

Fix E1 as the zero-section on each fiber of X. Given any other section E, addition by
E − E1 (in the group law of the fiber) gives an automorphism of each fiber that extends to
an automorphism of X. We call such automorphisms translations.

Proposition 3.4 ([GM]). The group of translations is contained in the Weyl group of X
and there is a fundamental domain for the action of the translation group on Nef(X).

An automorphism φ of X extends naturally to an automorphism of X [n] by sending an ideal
sheaf IZ to its pullback φ∗(IZ). In particular, the translations of X induce F [n]-preserving
automorphisms of X [n] that we will also call translations.

Corollary 3.5. The Morrison-Kawamata cone conjecture holds for the pair (X [n], F [n]).
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Proof. Let Π denote the fundamental domain for Nef(X) constructed by Grassi-Morrison.
We construct a domain Ψ as follows. We consider Π as a subset of Nef(X [n]) in the usual
manner. Let Ψ be the intersection of Nef(X [n]) with the cone spanned by Π and the class
(n− 1)F [n] − 1

2
B.

We have seen that Nef(X [n]) is contained in the cone spanned by Nef(X) and (n−1)F [n]−1
2
B.

To see that Ψ is rational polyhedral, note that Ψ is precisely the cone spanned by Π and the
set of all ε(C) for all extremal edges C of Π, where ε(C) is the unique F [n]-orthogonal ray in
the plane 〈C, (n− 1)F [n] − 1

2
B〉 constructed earlier. Since Π is rational polyhedral, it follows

that Ψ is too.
Suppose D ∈ Nef(X [n]). Let p(D) denote its projection to the B = 0 hyperplane. Then

p(D) ∈ φ(Π) for some translation φ ∈ Aut(X [n], F ), and so D is in the cone spanned by φ(Π)
and (n− 1)F [n] − 1

2
B, and thus D ∈ φ(Ψ). It follows that

Nef(X [n]) =
⋃

φ∈Aut(X[n],F [n])

φ(Ψ).

�

References

[AB] D. Arcara and A. Bertram, Bridgeland-stable moduli spaces for K-trivial surfaces. J. Eur. Math.
Soc. 15 no. 1 (2013), 1–38.

[BC] A. Bertram and I. Coskun, The birational geometry of the Hilbert scheme of points on surfaces. In
Birational Geometry, Rational Curves and Arithmetic (2013), Simons Symposia, Springer, 15–55.

[BM] A. Bayer and E. Macr̀ı. Projectivity and birational geometry of Bridgeland moduli spaces. J. Amer.
Math. Soc. 27 no. 3 (2014), 707752.

[BHL+] B. Bolognese, J. Huizenga, Y. Lin, E. Riedl, B. Schmidt, M. Woolf, and X. Zhao, Nef cones of
Hilbert schemes of points on surfaces. Algebra Number Theory 10 no. 4 (2016), 907–930.

[Br1] T. Bridgeland, Stability conditions on triangulated categories. Ann. of Math. (2) 166 no. 2 (2007),
317–345.

[Br2] T. Bridgeland, Stability conditions on K3 surfaces. Duke Math. J. 141 no. 2 (2008), 241–291.
[F1] J. Fogarty, Algebraic families on an algebraic surface. Amer. J. Math. 90 (1968), 511–521.
[F2] J. Fogarty, Algebraic families on an algebraic surface II: the Picard scheme of the punctual Hilbert

scheme. Amer. J. Math. 95 (1973), 660–687.
[GM] A. Grassi and D. Morrison, Automorphisms and the Kähler cone of certain Calabi-Yau manifolds.

Duke Math. J. 71 no. 3 (1993), 831–838.
[H] J. Huizenga, Birational geometry of moduli spaces of sheaves and Bridgeland stability. In Surveys

on Recent Developments in Algebraic Geometry (2017), I. Coskun, T. de Fernex, and A. Gibney
Eds., Proc. Symposia in Pure Math., American Mathematical Society, 101–148.

[K] J. Kopper, Stability and Positivity of Cycles. Ph.D. thesis (2019), University of Illinois Chicago.
[L] E. Looijenga, Rational surfaces with an anticanonical cycle. Ann. of Math. (2) 114 (1981), 267–322.
[M] A. Maciocia, Computing the walls associated to Bridgeland stability conditions on projective surfaces.

Asian J. Math. 18 no. 2 (2014), 263–279.
[T1] B. Totaro, Hilbert’s fourteenth problem over finite fields, and a conjecture on the cone of curves.

Compos. Math. 144 (2008), 1176–1198.
[T2] B. Totaro, The cone conjecture for Calabi-Yau pairs in dimension 2. Duke Math. J. 154 no. 2 (2010),

241–263.

Department of Mathematics, Statistics and CS, University of Illinois at Chicago, Chicago,
IL, 60607

E-mail address: jkoppe2@uic.edu


