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Abstract. We describe the locus of stable bundles on a smooth genus g curve that fail to be
globally generated. For each rank r and degree d with rg < d < r(2g − 1), we exhibit a component
of the expected dimension. We show moreover that no component has larger dimension and give an
explicit description of those families of smaller dimension than expected. For large enough degrees,
we show that the locus is irreducible.
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1. Introduction

The central goal of classical Brill-Noether theory on curves and its higher-rank analogues is to
describe loci of vector bundles possessing unexpectedly many global sections. In this paper we
complement this study by describing the locus of stable vector bundles that fail to be globally
generated. In the case of line bundles, the picture is quite clear (§3):

Proposition 1.1. Let C be a smooth projective curve of genus g ≥ 2 and d an integer. Then the
following hold.

(a) If d ≤ g, then the general line bundle of degree d is not globally generated.
(b) If g+ 1 ≤ d ≤ 2g− 1, then the general line bundle of degree d is globally generated and the locus

of line bundles with basepoint has codimension d− g in Picd(C).
(c) If d ≥ 2g, then every line bundle of degree d is globally generated.

The locus of non–globally generated line bundles can often be described explicitly. For example,
when d = 2g−1, the locus is isomorphic to the curve C. This follows from the fact that every degree
2g − 1 line bundle with a basepoint p ∈ C is of the form O(K + p), where K is a canonical divisor.

The problem for higher-rank bundles is more subtle. We look at the moduli space UC(r, d)
parameterizing S-equivalence classes of semistable sheaves of rank r and degree d. While statements
directly analogous to (a) and (c) in the above proposition still hold (Prop. 4.2), it is harder
to understand the locus of non–globally generated bundles when the general bundle is globally
generated. For example, given a non–globally generated line bundle L, vector bundles of the form
E = F ⊕ L are never globally generated, and one can produce families of such bundles in arbitrary
degree. Another difficulty is that global generation is not well-defined for S-equivalence classes
(Prop. 2.2). Our approach is to study the locus NC(r, d) ⊂ UC(r, d) of stable bundles of rank r
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and degree d that fail to be globally generated. When rg + 1 ≤ d ≤ r(2g − 1) − 1, this locus is
non-empty (Prop. 4.3), and has codimension at least one (Prop. 4.2).

Using a theorem of Sundaram, we can produce an upper bound on dimNC(r, d). A stable
E ∈ UC(r, d) has a basepoint at p if and only if h1(E(−p)) > 0, or equivalently, h0(E∗(K + p)) > 0.
If rg + 1 ≤ d ≤ r(2g − 1) − 1, then the vector bundle E∗(K + p) has degree d′ = r(2g − 1) − d
satisfying

1 ≤ d′ ≤ r(g − 1)− 1.

Thus the Brill-Noether locus

W 0
r,d′ = {F ∈ UC(r, d′) : h0(F ) ≥ 1}

surjects onto the locus of E ∈ UC(r, d) with basepoint at p via the map UC(r, d′)→ UC(r, d) defined
by F 7→ F ∗(K + p).

A theorem of Sundaram [S, Thm II.3.1] says that W 0
r,d′ has a unique component of maximal

dimension

r2(g − 1) + 1− (rg − r − d′ + 1) = dimUC(r, d)− (d− rg + 1).

By varying p along C, we conclude that the dimension of NC(r, d) is bounded above by

(1) r2(g − 1) + 1− (d− rg).

We call (1) the expected dimension of NC(r, d), and d− rg its expected codimension. Our goal is
to study the dimension and irreducible components of NC(r, d). The main results are summarized
in the following theorem.

Theorem 1.2 (4.6, 4.7, 4.12). Let C be a smooth projective curve of genus g ≥ 2, and r and d
integers satisfying r ≥ 2 and rg + 1 ≤ d ≤ r(2g − 1)− 1. Then we have the following:

(a) NC(r, d) is nonempty and has a component of the expected dimension and no component of
larger dimension.

(b) Let N0
C(r, d) ⊂ NC(r, d) denote the set of stable, non–globally generated E with h1(E) = 0.

Then N0
C(r, d) is nonempty, has a component of the expected dimension, and no component of

codimension greater than d− rg + 1.
(c) Suppose rg+ g− 1 ≤ d ≤ r(2g− 1)− 1. Then NC(r, d) is irreducible of the expected codimension

d− rg.

The key ingredients in the proof of the above theorem are the results of Teixidor i Bigas and
Russo [BR] and Narasimhan and Ramanan [NR]. We also investigate the locus of stable bundles
E with finitely many basepoints and h1(E) = 0 in Proposition 4.11. This locus is comparatively
well-behaved and has technical properties that simplify the proofs of some of the above results.

Structure of this paper. In Section 2 we briefly recall some basic facts about stable vector
bundles on curves. Section 3 is devoted to explaining the structure of the space of non–globally
generated line bundles. In Section 4 we prove our main results concerning the locus NC(r, d) for
bundles of rank at least 2.

Acknowledgments. The authors would like to thank Montserrat Teixidor i Bigas, Izzet Coskun,
Jack Huizenga, and John Lesieutre for their feedback and many valuable conversations. We are also
grateful to the anonymous referees for their thoughtful feedback.

2. Preliminaries

In this section we collect some useful definitions and basic results about coherent sheaves on
algebraic curves. We refer to [HL] for more background on stability and moduli spaces. We refer to
the appendix in [H] for direct proofs of the necessary facts about stacks.
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Let C be a smooth projective curve of genus g ≥ 2. We will denote by K a fixed but arbitrary
canonical divisor. Let E be a torsion-free sheaf on C. We denote the slope of E by the number

µ(E) =
deg(E)

rk(E)
.

We say E is semistable if µ(F ) ≤ µ(E) for all proper subsheaves F ⊂ E, and we say E is strictly
semistable if µ(F ) = µ(E) for some F . We say E is stable if strict inequality always holds.

Every semistable vector bundle E admits a Jordan-Hölder filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E,

where the Ei are vector bundles and the quotients Ei/Ei+1 are stable. We write grE =
⊕

iEi/Ei+1,
and we say E and F are S-equivalent if grE ∼= grF .

We denote by UC(r, d) the moduli space parameterizing S-equivalence classes of semistable sheaves
on C with rank r and degree d. The space UC(r, d) is irreducible of dimension r2(g − 1) + 1.

A sheaf E is called globally generated if for all points p ∈ C, the natural map

H0(E)→ Ep

is surjective. If p is a point for which the above map is not surjective, we call p a basepoint of E.
The following lemma is well-known and will be used implicitly throughout the paper.

Lemma 2.1. Suppose E ∈ UC(r, d). Then p is a basepoint of E if and only if h1(E(−p)) > h1(E).

We note that it is important to consider those bundles that are stable and discard those that are
strictly semistable. Indeed, global generation is not always well-defined for S-equivalence classes as
demonstrated by the following proposition.

Proposition 2.2. Let r = 2, d = 2(2g−1). Let p be a point in C, L a globally generated line bundle
of degree 2g − 1, and E a nontrivial extension of L by O(K + p). Then E is globally generated,
semistable, and S-equivalent to a non-globally generated bundle.

Proof. The bundle E fits into an exact sequence

(2) 0→ O(K + p)→ E → L→ 0

Let F ⊂ E be a subsheaf. Then there is a map F → L whose image either has degree at most
2g − 1 (because L is irreducible) or is zero, in which case F → L factors through O(K + p) and
the analogous fact applies. Thus E is semistable. The bundles E and O(K + p) ⊕ L are visibly
S-equivalent and O(K + p)⊕ L is not globally generated.

To show E is globally generated we first note that if E has a basepoint then it is at p. The end
of the long exact sequence in cohomology applied to (2) after twisting by O(−p) is the following:

· · · → H0(L(−p))→ H1(O(K))→ H1(E(−p))→ 0.

Since h1(O(K)) = 1, we see that E will be globally generated if and only if the map H0(L(−p))→
H1(O(K)) is nonzero. Applying Hom(L,−) to (2) instead, we have:

0→ Hom(L,O(K + p))→ Hom(L,E)→ Hom(L,L)→ Ext1(L,O(K + p))→ · · ·
Note that Ext1(L,O(K + p)) = H1(L∗(K + p)). The image of 1L under the map Hom(L,L) →
H1(L∗(K + p)) determines the map H0(L(−p))→ H1(O(K)) via the pairing

H1(L∗(K + p))×H0(L(−p))→ H1(O(K))

from Serre duality. The image of 1L in Ext1(L,O(K + p)) is nonzero if (2) is assumed to be a
nontrivial extension. Thus the map H0(L(−p))→ H1(O(K)) is nonzero and therefore E is globally
generated. �

Let r ≥ 2 and d be integers. We define
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Definition 2.3.

NC(r, d) = {E : E is stable and not globally generated} ⊂ UC(r, d).

3. Line bundles with basepoints

We describe here the locus of line bundles that fail to be globally generated. The main idea is
that the dimension of this locus decreases with the degree. If d ≤ g, then the general line bundle of
degree d is not globally generated, and if d > 2g − 1, then every line bundle is globally generated.
Consequently, we are interested in the range g + 1 ≤ d ≤ 2g − 1. We will see that when d = g + 1,
the locus of line bundles in Picd(C) with basepoint is a divisor. When d = g+ 2, it has codimension
2, and so on. The method of proof is to give an explicit description of line bundles that fail to be
globally generated.

Lemma 3.1. Let D be a divisor of degree d = g + j for 1 ≤ j ≤ g − 1. If O(D) has a basepoint
at p ∈ C, then D is linearly equivalent to K + p− q1 − · · · − qg−j−1 for some {qi} ⊂ C satisfying
qi 6= p for all i.

Proof. Since O(D) has a basepoint at p, we have h1(O(D − p)) = h1(O(D)) + 1. Equivalently, the
map

Hom(O(D −K − p),O(−p))→ Hom(O(D −K − p),O)

has a 1-dimensional cokernel. Thus there is a nonzero morphism O(D −K − p)→ O whose image
is not contained in the ideal sheaf O(−p). Thus O(D −K − p) is isomorphic to an ideal sheaf of a
divisor D′ ⊂ C whose support does not contain p. Writing D′ =

∑
qi gives the result. �

The lemma shows that every line bundle L with a basepoint at p is of the form

L ∼= O(K + p− q1 − q2 − · · · − qg−j−1).
By varying the points p, q1, . . . , qg−j−1, we obtain a (g − j)-dimensional family of line bundles with
basepoint. Prima facie, it may occur that many of these bundles are isomorphic and that the locus
cut out in Picd(C) does not have dimension g − j. The next proposition shows that the generic
situation is that a given line bundle in this family is isomorphic to only finitely many others in the
family, and therefore that the locus does have the expected dimension.

Proposition 3.2. Suppose 1 ≤ j ≤ g− 1. Then the dimension of the locus of line bundles of degree
d = g + j having a basepoint equals g − j.

Proof. Let

V = {(q1 + · · ·+ qg−j−1, p) : p 6= qi for all i} ⊂ C(g−j−1) × C.
Define a map Φ : V → Picg+j(C) by

Φ(q1 + · · ·+ qg−j−1, p) = O(K + p− q1 − · · · − qg−j−1).
Lemma 3.1 shows that Φ surjects onto the locus of non-globally generated line bundles. We will

show that Φ is generically finite and it will follow that the dimension of the locus of degree d line
bundles with a basepoint is bounded above by dimV = g− j. To conclude the proof, we will exhibit
a (g − j)-dimensional family of line bundles with basepoint.

Given (q1 + · · ·+ qg−j−1, p) ∈ V and p′ ∈ C, we claim that h0(q1 + q2 + · · ·+ qg−j−1 + p′ − p) > 0
is equivalent to the existence of points q′1, · · · , q′g−j−1 in C such that (q′1 + · · ·+ q′g−j−1, p

′) ∈ V and

the corresponding line bundles Φ(q1 + · · ·+ qg−j−1, p) and Φ(q′1 + · · ·+ q′g−j−1, p
′) are isomorphic.

Indeed, K + p−
∑
qi is linearly equivalent to K + p′ −

∑
q′i if and only if

q1 + · · ·+ qg−j−1 + p′ − p ∼ q′1 + · · ·+ q′g−j−1,

and the right-hand side is an effective divisor. If the qi’s and p′ are general, then we know from [ACGH,
Lemma IV.1.7] (with d = g−j and r = 0 in the notation in loc. cit.) that h0(q1+· · ·+qg−j−1+p′) = 1.
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Moreover, if p is not a basepoint of the (effective) divisor q1 + · · · + qg−j−1 + p′, then we have
h0(q1 + · · ·+ qg−j−1 + p′ − p) = 0. Thus the general fiber of Φ is finite.

To conclude the proof, we exhibit a (g − j)-dimensional family of degree-d line bundles with
basepoints. Let K = q1 + · · ·+ qg−j−1 +D′ be a canonical divisor with D′ effective. Let p ∈ C be a
point different from the qi and not in the support of D′. Define D = K + p−

∑
qi. Then we show

the following:

(i) h1(D) = 0,
(ii) h1(D − p) = 1, i.e., D has a basepoint at p.

Indeed h1(D) = h0(K −D′ − p). But there is a unique canonical section containing D′ and it does
not contain p by construction. Thus h1(D) = 0. On the other hand, h1(D − p) = h0(K −D′) = 1.

The fiber of Φ over a divisor D = K −
∑
qi + p constructed in this manner consists of a single

point. Indeed, if D ∼ K −
∑
q′i + p′, then

∑
qi + p′ − p has a section. By Serre duality, this is

occurs precisely if h1(D + p′) > 0. But we have seen that h1(D) = 0, so this is impossible. �

4. Higher rank bundles

In this section we prove the main results about the dimension of the locus NC(r, d) of stable
bundles with basepoints. We work throughout with a smooth projective curve C of genus g ≥ 2.
We begin with a few facts which show that we may restrict our attention to ranks r and degrees
d satisying rg + 1 ≤ d ≤ r(2g − 1) − 1, because this is the range for which the general—but not
every—stable bundle is globally generated. The first fact is a well-known result describing the
cohomology of a general stable bundle.

Lemma 4.1 ([Lau][S][BaR]). Let C be a smooth curve and E a general stable vector bundle on C.
Then E has at most one nonzero cohomology group.

Proposition 4.2. Let C be a smooth curve of genus g ≥ 2. Let r and d be integers with r ≥ 2. We
have the following:

(a) If d ≤ rg, then the general E ∈ UC(r, d) is not globally generated.
(b) If d > r(g − 1), then h1(E) = 0 for a general E ∈ UC(r, d).
(c) If d > r(2g − 1), then E is globally generated for all E ∈ UC(r, d).
(d) If d = r(2g − 1) and E is stable, then E is globally generated.
(e) If rg + 1 ≤ d ≤ r(2g − 1)− 1, then the general E ∈ UC(r, d) is globally generated.

Proof. Statement (a) is clear because if d ≤ rg, then χ(E) ≤ r by Riemann-Roch. By Lemma 4.1,
we have h0(E) ≤ r and therefore E does not have enough sections to be globally generated.

For statement (b), we have h0(E)− h1(E) = d+ r(1− g) > 0. By Lemma 4.1, it must be that
h1(E) = 0

For E to fail to be globally generated, the map H0(E)→ Ep must fail to be surjective, so we must
have 0 < h1(E(−p)) = h0(E∗(K + p)). But if degE∗(K + p) = −d+ r(2g − 1) < 0 and E∗(K + p)
is semistable, then it cannot have any sections. This gives (c).

Statement (d) is much like statement (c): we have 0 < h1(E(−p)) = hom(E,O(K + p)). Since
both E and O(K + p) are stable of same slope, there can be no nonzero maps between them unless
they are isomorphic, which they are not.

For statement (e), we note that the dimension of the locus of non-globally generated bundles in
UC(r, d) is bounded above by r2(g − 1) + 1− (d− rg) (see Equation (1)), which is strictly smaller
than the dimension of UC(r, d) when rg + 1 ≤ d ≤ r(2g − 1)− 1. �

4.1. Higher rank bundles with basepoints. We are now able to compute the dimension of
NC(r, d). The following three facts are the primary objectives of this subsection.

• Let N0
C(r, d) ⊂ NC(r, d) denote the set of stable, non–globally generated E with h1(E) = 0.

Then every component of N0
C(r, d) has the expected codimension or consists of vector bundles
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that are nowhere globally generated, in which case the component has codimension at most
d− rg + 1 (Prop. 4.6.)
• For each d in the range rg+1 ≤ d ≤ r(2g−1)−1, there is a family of non–globally generated

vector bundles with the expected dimension (Cor. 4.7.)
• Any stable E ∈ UC(r, d) with rg+ 1 ≤ d ≤ r(2g− 1)− 1 and a basepoint at p is an extension

of the form

0→ F → E → O(K + p−D)→ 0,

with D effective (Prop. 4.9.)

Proposition 4.3 constructs an element of N0
C(r, d). In fact, it produces a family of stable bundles

of the form

0→ F → E → O(K + p−D)→ 0,

where F is a generic stable bundle of rank r − 1 and D is an effective divisor. The main content of
the proof lies in showing that a generic such E is stable. To do so, we follow the method of [BR],
which was originally used to show that generic extensions of the form

0→ E′ → E → E′′ → 0

are stable whenever E′ and E′′ are generic stable bundles and µ(E′) < µ(E′′). We can use the result
of [BR] to produce stable bundles with basepoints as follows. Let D be an effective divisor on C
whose degree satisfies 2g− 1− degD > d/r. Let L be a generic line bundle of degree 2g− 1− degD
and F a generic stable bundle of rank r− 1 and degree d− (2g− 1− degD). Then [BR] says that a
generic extension

0→ F → E → L→ 0

is stable. Twisting by L∗(K + p−D), we obtain a stable vector bundle E⊗L(K + p−D) exhibited
as an extension

0→ F ⊗ L(K + p−D)→ E ⊗ L(K + p−D)→ O(K + p−D)→ 0.

The bundle E ⊗ L(K + p − D) has a basepoint at p as long as p is not in the support of D. A
slightly stronger statement is available: the dense set from which F is chosen need not depend
on p and D. The proof of this stronger fact is essentially what appears in [BR, Prop. 1.11] and
[BR, Thm. 0.1], with some extra care taken in tracking the dependence on p and D. We include a
complete proof below for the reader’s convenience.

Proposition 4.3. Suppose g ≥ 2, r ≥ 2, and rg + 1 ≤ d ≤ r(2g − 1)− 1. Let l be a nonnegative
integer such that 2g− 1− l > d/r. Then there exists a dense collection of stable vector bundles F of
rank r− 1 and degree d− (2g − 1− l) such that for any effective divisor D of degree l and any point
p ∈ C not in the support of D, a generic extension

0→ F → E → O(K + p−D)→ 0,

yields a stable bundle E of rank r and degree d with a basepoint at p.

Proof. We begin by adding points to the divisor D to make its degree as large as possible. We then
use elementary and dual elementary modifications [BR, Def. 1.6] to remove the extra points. Define
the integer j by

2g − j − degD =

{
ddr e, if r - d
d
r + 1, if r|d

By the definition of j, we must have j ≥ 1. If j ≥ 2, pick generic points q1, . . . , qj−1 ∈ C with
p 6= qi for all 1 ≤ i ≤ j − 1.

We first show that for F generic in its moduli space, a general extension of O(K + p−D − q1 −
· · · − qj−1) by F is stable. This is the setup of [BR, Prop. 1.11]. Moreover, we will show that F
can be taken to move within an open subset of UC(r − 1, d− (2g − j − l)) that does not depend
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on p, D, or the points q1, . . . , qj−1. To do this, we retread the argument of [BR, Prop. 1.11] and
highlight the genericity assumption on the bundle F . We later compute the dimension of this space
of extensions and show that it is bounded below by (r− 1)(g− 1) + 1 (see Equations (10) and (11).)

Let E be such an extension, so that we have the following exact sequence:

(3) 0→ F → E → O(K + p−D − q1 − · · · − qj−1)→ 0.

Dualizing the above sequence, we get an exact sequence exhibiting E∗ as an extension of F ∗ by
O(−K − p+D + q1 + · · ·+ qj−1). We have

(4) µ(F ∗)− µ(E∗) =
r(2g − j − degD)− d

r(r − 1)
≤ 1

r − 1
.

Suppose E∗ is not stable so that there exists a maximal destabilizing subbundle G ⊂ E∗ with
µ(G) ≥ µ(E∗). Without loss of generality we may assume G is stable. Since µ(G) ≥ µ(E∗) > j− 2g,
G cannot map to O(−K − p+D+ q1 + · · ·+ qj−1). Thus the composition G→ E∗ → F ∗ is nonzero.
Let G′ denote the image of G in F ∗.

We show next that rk(G′) = r − 1. Suppose not. Then rk(G′) < r − 1. Since F is generic, we
have by [Lan, Satz 2.2],

(5) µ(G′) ≤ µ(F ∗)−
(

1− rk(G′)

r − 1

)
(g − 1).

Combining (4) and (5), we have

(6) µ(E∗) ≤ µ(G) ≤ µ(G′) ≤ µ(E∗) +
1

r − 1
−
(

1− rk(G′)

r − 1

)
(g − 1).

In particular, we must have

1

r − 1
−
(

1− rk(G′)

r − 1

)
(g − 1) ≥ 0.

Equivalently,

(r − 1− rk(G′))(g − 1) ≤ 1.

If g ≥ 3, we have rk(G′) = r − 1 as claimed. Assume now that g = 2. Then we must have
rkG′ = r − 2. The inequality (6) becomes an equality, and consequently the inequalities (4) and (5)
become equalities too. Applying (4) again, we have

(7) µ(F ∗) = µ(E∗) +
1

r − 1
.

Since g = 2, by the definition of j we have

4− j − deg(D) >
d

r
,

and by hypothesis we have
d

r
≥ 2 +

1

r
.

Combining these inequalities with the fact that D is effective, we have

2− j − 1

r
> deg(D) ≥ 0,

which forces j = 1 and D = 0. The above equation (7) becomes

3− d
r − 1

= −d
r

+
1

r − 1
,

and thus d = 2r, which is not possible because we have assumed d ≥ 2r + 1. We conclude that
rkG′ = r − 1 for all g ≥ 2.
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Now (4) and the fact that µ(G′) ≤ µ(F ∗) together imply the following chain of inequalities.

(8) − d

r
≤ degG

r − 1
≤ −d+ 2g − degD − j

r − 1
≤ −d

r
+

1

r − 1
.

Multiplying (8) by r − 1 we see that one of the following must hold:

(i) degG = −d+ 2g − degD − j, or
(ii) degG = −d+ 2g − degD − j − 1.

In case (i), we have G = F ∗ because F ∗ is stable. But E∗ is a generic extension and the exact
sequence (3) does not split, so this is impossible. Thus degG = −d+ 2g − degD − j − 1 and we
have an exact sequence

(9) 0→ G→ F ∗ → Op′ → 0

for some p′ ∈ C. Consider now the pullback diagram

0 // O(−K − p+D + q1 + · · ·+ qj) // E∗ // F ∗ // 0

0 // O(−K − p+D + q1 + · · ·+ qj) //

OO

E∗ ×F ∗ G //

OO

G //

OO

0

The second row splits because G is a subbundle of E∗, and so the corresponding element of
Ext1(F ∗,O(−K − p+D + q1 + · · ·+ qj−1)) is in the kernel of the map

H1(F (−K − p+D + q1 + · · ·+ qj−1))→ H1(G∗(−K − p+D + q1 + · · ·+ qj−1)),

and thus is in the image of the map

H0(Op′)→ H1(F (−K − p+D + q1 + · · ·+ qj−1)).

Thus given G, E∗ can vary in a family of dimension at most 1. The bundle G itself depends on
the choice of point p′ in (9) and an element of P(Fp′). It follows that the locus of unstable E∗ has

dimension at most 1 + (r − 2) + 1 = r in Ext1(F ∗,O(−K − p+D + q1 + · · ·+ qj−1)).
We now show that the space of extensions has dimension greater than r. By Serre duality,

(10) ext1(F ∗,O(−K − p+D + q1 + · · ·+ qj−1)) = h0(F ∗(2K + p−D − q1 − · · · − qj−1)).
Since d ≤ r(2g − j)− r deg(D)− 1 by the definition of j, we must have
(11)
h0(F ∗(2K + p−D − q1 − · · · − qj−1)) = χ(F ∗(2K + p−D − q1 − · · · − qj−1))

= (r − 1)(3g − 1− degD − j) + (−d+ 2g − degD − j)
≥ (r − 1)(g − 1) + 1.

As a consequence, we have

ext1(F ∗,O(−K − p+D + q1 + · · ·+ qj−1)) ≥ (r − 1)(g − 1) + 1.

We distinguish two cases: g = 2 and g ≥ 3. When g ≥ 3, the above gives h0(F ∗(2K + p−D − q1 −
· · · − qj−1)) ≥ r + 1. We have seen that the space of extensions with E unstable has dimension at
most r, thus the general one must be stable.

If g = 2, then j = 1, D = 0, and

h0(F ∗(2K + p)) = 4r − 1− d.
We computed above that degG = 3 − 3r. Since 2r + 1 ≤ d ≤ 3r − 1 by assumption, we see that
h0(F ∗(2K + p)) ≥ r + 1 unless d = 3r − 1. If d = 3r − 1, then (8) gives

1− 3r

r
≤ degG

r − 1
=

3− 3r

r − 1
,

which is impossible.
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Note that rk(G′) = r− 1 implies that the map G→ G′ is an isomorphism. Indeed, rk(G′) = r− 1
forces rk(G) ≥ r− 1, and since G is a maximal destabilizing subbundle of a non-stable rank-r vector
bundle, we have rk(G) ≤ r − 1. Since the map G→ G′ is a surjection between two vector bundles
of the same rank, it must be an isomorphism.

The only requirement on the genericity of F we have used in the above argument is that it needs
to satisfy [Lan, Satz 2.2] bounding the slope of its subsheaves. To finish the proof of the theorem,
we now use a sequence of elementary and dual elementary modifications to produce a stable E
fitting into an exact sequence of the form

0→ F → E → O(K + p−D)→ 0.

Given an exact sequence of the form (3), apply a generic dual elementary modification ([BR, Def.
1.6]) at the point q1. We get an exact sequence ([BR, Lemma 1.8])

0→ F → E′ → O(K + p−D − q2 − · · · − qj−1)→ 0.

Applying a generic elementary modification at a general point p′′ ∈ C, we get another exact sequence
([BR, Lemma 1.7])

0→ F ′ → E′′ → O(K + p−D − q2 − · · · − qj−1)→ 0.

By varying the point p′′ we obtain a family of vector bundles with deg(E′′) = deg(E). When
p′′ = q1, there is an elementary modification that recovers the bundle E we began with. Since E is
stable, the generic E′′ in this family is stable. Since F and p′′ are generic, F ′ is stable [BaR, Lemma
2.5], and the locus of such F ′ is dense in the moduli space [BaR, Rmk. 2.6]. We can now repeat
this process, beginning with an elementary modification at q2 and repeating to eliminate the qi’s
and produce a stable extension of the desired form. Since the family of bundles F we started with
was independent of p, D, and the qi, it follows that the family of bundles of rank r − 1 and degree
d− (2g − 1− l) we obtain via generic elementary modifications is also independent of p and D. �

We now consider the following subsets of NC(r, d). We will show that they are nonempty open
subsets. We will use them while analyzing the irreducible components of NC(r, d).

Definition 4.4. Let r ≥ 2 and d be integers. We define the following loci in UC(r, d).

N0
C(r, d) = {E ∈ NC(r, d) : h1(E) = 0}

Nf
C(r, d) = {E ∈ NC(r, d) : h1(E) = 0 and E has finitely many basepoints}

Since vanishing of the first cohomology is an open condition, we see that N0
C(r, d) is an open

subset of NC(r, d) and is nonempty when d > r(g − 1) by Proposition 4.2.

Lemma 4.5. Suppose r ≥ 1 and rg ≤ d ≤ r(2g − 1)− 1 or r = 1 and d = 2g − 1. Then the locus

Nf
C(r, d) is a nonempty open subset of NC(r, d)

Proof. If r = 1, then E is a line bundle L. Since d ≥ g, we have h0(L) > 0. A section defines a map
O → L whose cokernel is a torsion sheaf supported on a finite collection of points. The basepoints
of L must be a subset of this collection, hence there are finitely many.

Suppose r ≥ 2. Our first goal is to show that Nf
C(r, d) is an open subset of NC(r, d). Let

T → T × C be a family of stable vector bundles on C with h1(Tt) = 0 for all t ∈ T . Let Σ denote
the incidence correspondence

Σ = {(t, p) : h1(Tt(−p)) > 0} ⊂ T × C.
Then a bundle Tt has infinitely many basepoints if and only if the fiber over t is positive-dimensional.

Thus the openness of Nf
C(r, d) follows from the semicontinuity of dimension of the fibers.

We proceed to show that Nf
C(r, d) is non-empty. If r ≥ 2 and d = rg, then put E = L⊕r, where

L is a degree g line bundle with h0(L) = 1 and h1(L) = 0. Clearly h1(E) = 0. By our discussion
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for the r = 1 case, L has finitely many basepoints, and hence, E also has finitely many basepoints.
By [NR, Prop. 2.6], we may deform E to a stable bundle. Let T → T × C be a family containing
E and a stable bundle, and let π : T × C → T be the projection. The map π∗π∗T → T restricts
to the map H0(Tt) → (Tt)p at a point (t, p) ∈ T × C. When Tt = E and p is not a basepoint
of E, this map is surjective, hence it is surjective for a general (t, p). Moreover, Tt is stable with

h1(Tt) = 0 for a general t. In particular, Nf
C(r, rg) is nonempty.

Finally, we look at the case r ≥ 2 and rg + 1 ≤ d ≤ r(2g − 1)− 1. We induct on the rank and
degree. We wish to take an extension of a line bundle by a rank r − 1 bundle as in Proposition 4.3
to apply the inductive hypothesis. Let j be a positive integer satisfying

(r + 1)g − d ≤ j < 2g − d

r
.

Note that 2g − d/r is always positive because d ≤ r(2g − 1)− 1. Since j < 2g − d/r, we have

d− 2g + j

r − 1
<
d

r
< 2g − j.

As a consequence of (r + 1)g − d ≤ j and above inequality, we see that

(r − 1)g ≤ d− 2g + j < (r − 1)(2g − j)

Using Proposition 4.2 along with the inductive hypothesis, a generic stable bundle F of rank r − 1
and degree d− 2g + j will have h1(F ) = 0 and at most finitely many basepoints. By Proposition
4.3, there exists an extension of the form

0→ F → E → O(K + p− q1 − · · · − qj−1)→ 0

with E stable. Since rg + 1 ≤ d, we have 2g − d/r ≤ g − 1/r, and consequently, j − 1 ≤ g − 1. If
the points p, q1, . . . , qj−1 are chosen to be general, then h1(O(K + p− q1 − · · · − qj−1)) = 0 because
a general effective divisor of degree j − 1 has at most one global section [ACGH, IV.1.7]. It follows
from above exact sequence that E has p as a basepoint. Since F and O(K + p− q1 − · · · − qj−1)
have at most finitely many basepoints and trivial first cohomology, so does E. �

The next proposition shows that the locus NC(r, d) is determinantal, at least on the open subset
of UC(r, d) consisting of sheaves with the expected number of global sections. To prove this, we use
a Poincaré family on the moduli space or a suitable étale cover.

Proposition 4.6. Let N0
C(r, d) ⊂ NC(r, d) denote the set of stable, non–globally generated E with

h1(E) = 0. Then every component of N0
C(r, d) is either of the expected codimension d − rg or

consists of vector bundles that are nowhere globally generated, in which case the component has
codimension at most d− rg + 1.

Proof. By [NR, Prop. 2.4], there exists an étale covering M → UC(r, d) that carries a Poincaré
family E →M× C. When r and d are coprime, we may take M to be UC(r, d) itself. The scheme
M parameterizes a family {Em}m∈M of stable sheaves of rank r and degree d.

Define Y ⊂M to be the open subset {m ∈M : h1(Em) = 0}. Denote by E |Y×C the restriction
of the Poincaré bundle to Y × C and let π1 and π2 denote the projections to the first and second
factors, respectively. The sheaf π∗1π1∗E |Y×C is locally free on Y with fiber over (m, p) equal to
H0(Em).

Let p ∈ C be a point. The natural evaluation map E → Ep for any vector bundle E induces a
map

π∗1π1∗E → E ⊗ π∗2 Op,

For a point m ∈ Y , write E = Em and take fibers of the above map at (m, p) ∈ Y × C. Then the
map becomes

H0(E)→ Ep,
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where the former has rank χ(E) = d+ r(1− g) on Y and the latter has rank r. This map fails to
be surjective at p if and only if p is a basepoint of E. Thus the determinantal locus where the map

π1∗E |Y×C → π1∗(E |Y×C ⊗ π∗2 Op)

has rank at most r − 1 is the locus Σ ⊂ Y ×C parameterizing pairs (E, p) where E is stable with a
basepoint at p. The codimension of this locus is at most d− rg + 1 by the theory of determinantal
varieties [ACGH, Ch. 2].

As a consequence of Lemma 4.5 the general bundle E has finitely many basepoints, so the fibers
of the natural surjective map Σ→ N0

C(r, d) are generically finite. Thus the general point in N0
C(r, d)

is in a component of codimension d− rg.
If E is a bundle such that H0(E) → Ep is not surjective for all p in C, then the fiber of

Σ→ N0
C(r, d) is C itself, in which case we see that E is contained in a component of N0

C(r, d) of
codimension at most d− rg + 1. �

An immediate consequence of Proposition 4.3 along with Proposition 4.6 is that NC(r, d) always
contains a component of the expected dimension.

Corollary 4.7. Suppose rg+ 1 ≤ d ≤ r(2g− 1)− 1. Then NC(r, d) has a component of the expected
dimension.

Proof. Every irreducible component of NC(r, d) that intersects Nf
C(r, d) non-trivially will have the

expected dimension. �

If we impose slightly stronger restrictions on the degree of E, we can show that the family of
bundles we constructed has the expected codimension, even outside of N0

C(r, d).

Proposition 4.8. Assume r ≥ 2, g ≥ 2, 1 ≤ j ≤ g − 1 and rg + g − j ≤ d ≤ r(2g − j)− 1. Then
the locus of E ∈ UC(r, d) that can be expressed in an exact sequence of the form

0→ F → E → O(K + p− q1 − q2 − · · · − qj−1)→ 0

where p, q1, q2, . . . , qj−1 are in C, p 6= qi for all i, and F ∈ UC(r − 1, d− (2g − j)), has the expected
codimension d− rg + (r − 1)(j − 1).

Proof. The proof proceeds by counting the dimension of the family parameterizing such extensions,
then by studying the classifying map from this family to the moduli space. Proposition 4.3 guarantees
the existence of at least one stable E of the desired form.

Observe first that there is a universal family parameterizing line bundles of the form O(K + p−
q1 − · · · − qj−1). Indeed, define

Σ = {(p, q1, . . . , qj−1) ∈ C×j : p 6= qi for all i}.

Let π : C ×Σ→ C be the first projection and πi : C ×Σ→ C be the composition C ×Σ→ Σ→ C,
where the second map is the projection to the ith coordinate. Then

π∗O(K)⊗ (π × π1)∗(OC×C(∆))⊗
j⊗

i=2

(π × πi)∗(OC×C(−∆))|C×(p,q1,...,qj−1)

∼= O(K + p− q1 − · · · − qj−1).

By [NR, Prop. 2.4], if r ≥ 3, there exists a non-singular, separated scheme M of finite type
parameterizing a family F = {Fm}m∈M of rank r − 1, degree d− (2g − 1) stable vector bundles
satisfying the following.

(i) M has finitely many irreducible components.
(ii) dimM = (r − 1)2(g − 1) + 1.

(iii) The classifying map θF :M→ UC(r − 1, d− (2g − 1)) is étale and surjective.
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If r = 2, we writeM = UC(1, d− (2g−1)) and let F be the universal family of degree d− (2g−1)
line bundles. Let M1,M2, . . . ,Mn be the irreducible components of M. By [S, Prop. 2.1], for
all 1 ≤ i ≤ n there exists a universal family of extensions Pi parameterizing the projective spaces
P(Ext1(O(K + p − q1 − · · · − qj−1),Fm)) as p varies over C and m varies over Mi. Since Fm is
stable and µ(Fm) < 2g − j, we must have hom(O(K + p − q1 − · · · − qj−1),Fm) = 0. From this
we conclude that the fibers P(Ext1(O(K + p − q1 − · · · − qj−1),Fm) are irreducible of the same
dimension. Since Mi × C is irreducible, so is Pi for 1 ≤ i ≤ n.

Let P denote the union of the Pi, and let Ps ⊂ P be the open subset consisting of stable
extensions. Since θF is étale, we have dimPi = dimPi′ for all i, i′. This gives,

dimPs = dimP = dimM+ dimC + P(Ext1(O(K + p− q1 − · · · − qj−1),Fm),

whence

dimPs = [(r − 1)2(g − 1) + 1] + j + [(r − 1)(3g − 1− j) + (2g − j)− d− 1]

= r2(g − 1) + 1− (d− rg + (r − 1)(j − 1)).

Let Φ : Ps → UC(r, d) denote the canonical rational map. We show that Φ is generically finite.
For any vector bundle F of degree d− (2g − j) and rank r − 1, we have

−χ(F ) = χ(F ∗(K)) = rg + g − r + 1− j − d < 0,

deg(F ) = d− (2g − j) ≥ (r − 1)g.

From Lemma 4.1, we see that the general F ∈ UC(r−1, d− (2g−1)) has h1(F ) = h0(F ∗(K)) = 0.
Since θF is étale and hence open, the general F in θF (Mi) must satisfy h0(F ∗(K)) = 0. Let
V ⊂ Ps be the open subset parameterizing stable extensions

0→ F → E → O(K + p− q1 − · · · − qj−1)→ 0

such that F is stable and h1(F ) = h1(F (−p)) = 0.
We claim that Φ|V has finite fibers. Let E be any vector bundle in the image Φ(V ). Then there

is an extension

0→ F → E → O(K + p− q1 − · · · − qj−1)→ 0

with F stable and h1(F ) = h1(F (−p)) = 0. Twisting the above exact sequence by O(−p+ q1 + · · ·+
qj−1) and taking the long exact sequence in cohomology, we see that h1(E(−p+ q1 + · · ·+ qj−1)) = 1.
Then hom(E,O(K + p − q1 − · · · − qj−1)) = 1 by Serre duality, and so there is a unique map
E → O(K + p− q1 − · · · − qj−1) modulo scalars. This map uniquely determines F . Moreover, any
other point in Φ−1(E) must be an extension of the form

0→ F → E → O(K + p′ − q′1 − · · · − q′j−1)→ 0,

where p′ is some (potentially different) basepoint of E. Since the general E has finitely many
basepoints, we conclude that

dim Φ(V ) = dimV = dimPs = r2(g − 1) + 1− (d− rg + (r − 1)(j − 1)).

�

The next proposition shows that the expected dimension is an upper bound on the dimension of
a component of NC(r, d). Moreover, it shows that any E in NC(r, d) must be an extension similar
to one of the ones constructed in Proposition 4.3 because any E with a basepoint at p must admit a
map to O(K + p).

Proposition 4.9. Any stable E ∈ UC(r, d) with rg + 1 ≤ d ≤ r(2g − 1)− 1 and a basepoint at p is
an extension of the form

0→ F → E → O(K + p−D)→ 0,
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with D effective and p not in the support of D. Furthermore, for any integer j ≥ 1, the dimension
of the family of such extensions, as p varies over C, D varies over the symmetric product C(j−1),
and F varies over deformation families of rank r − 1, degree d − (2g − j) vector bundles whose
general element is stable, is at most

r2(g − 1) + 1− (d− rg + (r − 1)(j − 1)).

Proof. Let E be a stable bundle with a basepoint at p ∈ C. Then h1(E(−p)) > h1(E), and so
hom(E,O(K + p)) > hom(E,O(K)). Let f : E → O(K + p) be a nonzero map whose image
L ⊂ O(K + p) is not contained in O(K), and let F be its kernel, so that we have an exact sequence

(12) 0→ F → E → L→ 0.

Then F is a vector bundle of rank r − 1 and degree d− degL. Since the moduli space of semistable
sheaves is dense in the stack of coherent sheaves, F can be deformed to a stable bundle and can
therefore depend on at most (r − 1)2(g − 1) + 1 moduli (see [NR, Prop 2.6]).

Since we have assumed L is not a subbundle of O(K), we know that 0 = hom(L,O(K)) = h1(L).
Observe that L has a basepoint at p: by construction, h1(L(−p)) = hom(L,O(K + p)) is nonzero,
whereas h1(L) = hom(L,O(K)) = 0. Thus p is a basepoint of L and by Lemma 3.1, L must be of
the form L = O(K + p− q1 − · · · − qj−1) for some points q1, . . . , qj−1. The dimension of the locus
of such line bundles, as p and the qi vary, is j. Furthermore, the dimension of the space of such
extensions is given by

ext1(O(K + p− q1 − · · · − qj−1), F ) = h0(F ∗ ⊗ L(K)).

To compute this, we dualize the exact sequence (12) and twist by L(K):

0→ O(K)→ E∗ ⊗ L(K)→ F ∗ ⊗ L(K)→ 0.

We show that h1(F ∗ ⊗ L(K)) = hom(L,F ) = 0. If there were a nontrivial morphism L→ F , then
the composition

E → L→ F → E

gives a nontrivial morphism E → E that is not a homothety. This is impossible because E is stable.
Thus h1(F ∗ ⊗ L(K)) = 0, and so

h0(F ∗ ⊗ L(K)) = 3(r − 1)(g − 1) + (r − 1)− r(j − 1)− d+ 2g − 1

The bundle F can depend only on at most (r − 1)2(g − 1) + 1 moduli. Thus by moving F , the
points p, q1, . . . , qj−1, and the extension in Ext1(L,F ), we obtain a family of dimension at most

[(r − 1)2(g − 1) + 1] + j + [3(r − 1)(g − 1) + (r − 1)− r(j − 1)− d+ 2g − 1]− 1

= r2(g − 1) + 1− (d− rg + (r − 1)(j − 1))

Moreover, there are finitely many such families: they are determined by the degree of the line
bundle L in (12), and we have µ(E) ≤ degL ≤ 2g− 1. Thus any semistable bundle with a basepoint
is in one of finitely many families of codimension at least d− rg. �

4.2. Irreducibility of NC(r, d). We explain here that the locus NC(r, d) is irreducible of the
expected codimension d − rg when rg + g − 1 ≤ d ≤ r(2g − 1) − 1. The key idea is that
UC(r − 1, d− (2g − 1)) is irreducible, so there exists a family of stable bundles parameterized by an
irreducible variety such that the classifying map surjects onto UC(r − 1, d− (2g − 1)). We use this
fact together with the constructions in the previous subsection to produce an irreducible subset of
N0

C(r, d) and show that it is dense in NC(r, d) (see Theorem 4.12). We will use the same notation
as in the previous subsection and continue to assume that C is a smooth curve of genus g ≥ 2.

Lemma 4.10. Suppose r ≥ 2 and rg + g − 1 ≤ d ≤ r(2g − 1)− 1. Then the general element E of
any irreducible component of N0

C(r, d) is an extension of the form

0→ F → E → O(K + p)→ 0.
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Proof. By Proposition 4.6, every component of N0
C(r, d) has dimension

r2(g − 1) + 1− (d− rg + δ),

where δ ∈ {0, 1}. On the other hand, Proposition 4.8 shows that any E in NC(r, d) is of the form

0→ F → E → O(K + p− q1 − · · · − qj−1)→ 0

and such families have dimension at most r2(g − 1) + 1− (d− rg + (r − 1)(j − 1)). We see that if
r ≥ 3, then the general E must fit into such an exact sequence with j = 1 and the claim is proved.

If r = 2, the general E must fit into such an exact sequence with j = 1 or j = 2, and F must be
a line bundle. If j = 1, we are done. If j = 2, then we have

h0(F ) ≥ χ(F ) = (d− (2g − 2)) + 1− g = 2.

Since F has a nonzero global section, it has at most finitely many basepoints and hence E does too.
But Proposition 4.6 says that if δ = 1, then the general element of the component of E must have
the entire curve as its base locus, a contradiction. �

The next lemma shows that the sets N0
C(r, d) and Nf

C(r, d) are dense in NC(r, d). Recall that

Nf
C(r, d) is the locus of stable vector bundles E ∈ NC(r, d) with finitely many basepoints and

h1(E) = 0.

Proposition 4.11. (a) Suppose r ≥ 2 and max{rg + 1, rg + g − r + 1} ≤ d ≤ r(2g − 1)− 1. Then
N0

C(r, d) is a dense open subset of NC(r, d).
(b) Suppose one of the following hold:

(i) r ≥ 2 and rg + g − 1 ≤ d ≤ r(2g − 1)− 1, or
(ii) r = 1 and g ≤ d ≤ 2g − 1, or

(iii) r ≥ 1 and d = rg.

Then Nf
C(r, d) is a dense open subset of NC(r, d).

Proof. We have seen that both N0
C(r, d) and Nf

C(r, d) are nonempty open subsets of NC(r, d). It
remains to show denseness under the hypotheses of the lemma.

To show (a), suppose E ∈ NC(r, d) has a basepoint at p. Then by Proposition 4.8, there is an
exact sequence

0→ F → E → O(K + p− q1 − · · · − qj−1)→ 0

for some points q1, . . . , qj−1. Note that

χ(F ) = d− (2g − j) + (r − 1)(1− g)

≥ (rg + g − r + 1)− (2g − j) + (r − 1)− (rg − g)

≥ 1.

We will construct a subset of N0
C(r, d) whose closure contains E. Let F → T × C be a family of

vector bundles of rank r − 1 and degree d − (2g − j) parameterized by an irreducible variety T
containing F0 = F and a stable bundle F1 satisfying h1(F1) = 0 (see [NR, Prop 2.6]). Define the
incidence correspondence Σ ⊂ T × C×j by

Σ = {(t, p′, q′1, . . . , q′j−1) : p′ 6= q′i for all i,hom(O(K + p′ − q′1 − · · · − q′j−1,Ft) = 0}.

Note that Σ is nonempty because (0, p, q1, . . . , qj−1) ∈ Σ. Let p : P → Σ denote the family
parameterizing extensions P(Ext1(O(K + p′− q′1− · · · − q′j−1),Ft)) as (t, p′, q′1, . . . , q

′
j−1) varies over

Σ. By the definition of Σ and the fact that Σ is irreducible, we see that the fibers Ext1(O(K + p′ −
q′1 − · · · − q′j−1),Ft) of P are irreducible and equidimensional. Thus P itself is irreducible.

Define the open subset Σ◦ ⊂ Σ by

Σ◦ = {(t, p′, q′1, . . . , q′j−1) : h1(Ft) = h1(O(K + p′ − q′1 − · · · − q′j−1) = 0}.
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Observe that for general p′, q′1, . . . , q
′
j−1, we have hom(O(K + p′ − q′1 − · · · − q′j−1,F1) = 0 because

F1 is stable of slope (d− (2g − j))/(r − 1) < 2g − j. Thus Σ◦ is nonempty and clearly open in Σ.
Let Ps ⊂ P denote the subset of P parameterizing stable extensions. Then we have the canonical

rational map
Φ : Ps → UC(r, d).

Note that Φ(Ps) ∩ N0
C(r, d) is nonempty. Indeed, P is irreducible and both Ps and p−1(Σ◦) are

nonempty open subsets. Thus Ps ∩ p−1(Σ◦) is nonempty, and any point in the intersection maps to
N0

C(r, d) under Φ. That is, Φ(Ps ∩ p−1(Σ◦)) is contained in N0
C(r, d) and E is in its closure, thus E

is in the closure of N0
C(r, d). This gives (a).

We now prove the statements in part (b).

(i) We argue as in (a) and omit most of the details. Note that the assumption d ≥ rg + g − 1
implies χ(F ) ≥ r − 1, which allows us to deform the bundle F to one that is not only stable
but also has finitely many basepoints. In the definition of the incidence correspondence Σ◦, we
require further that Ft have finitely many basepoints.

(ii) Since g ≤ d ≤ 2g − 1, every line bundle of degree d has a non-zero global section. The zero
locus of this section is a finite collection of points containing the base locus of E.

(iii) The assumption d = rg implies that the general E in UC(r, d) has h0(E) = r and h1(E) = 0.

In particular, the general E in UC(r, d) has finitely many basepoints and so Nf
C(r, d) is dense

in UC(r, d) and a fortiori is also dense in NC(r, d).

�

Theorem 4.12. Suppose rg+g−1 ≤ d ≤ r(2g−1)−1. Then NC(r, d) is irreducible of the expected
codimension d− rg.

Proof. We observe that by Proposition 4.11 it suffices to show that N0
C(r, d) is irreducible. Using,

for example, [NR, Prop 2.6], we see that there exists an irreducible smooth varietyM together with
a family F →M×C of stable vector bundles of rank r and degree d such that the classifying map

θF :M→ UC(r − 1, d− (2g − 1))

is surjective. Let P denote the family parameterizing extensions of the form

(13) 0→ Fm → E → O(K + p)→ 0

as m varies over M and p varies over C. Then P is irreducible, as is the open subset Ps ⊂ P
parameterizing stable bundles E. Consequently, Φ(Ps) ∩N0

C(r, d) is irreducible in NC(r, d). As a
consequence of Lemma 4.10, the general element E in N0

C(r, d) can be expressed as

(14) 0→ F → E → O(K + p)→ 0.

We wish to show that such an E is in the closure of Φ(Ps) ∩N0
C(r, d). Note that the bundle F may

not be stable, but there is a smooth irreducible variety T parameterizing a family of vector bundles
T → T × C with fiber T0 = F and Tt stable for the general t ∈ T (see [NR, Prop 2.6]). Define the
incidence correspondence

Σ = {(t, p′) : hom(O(K + p′),Tt) = 0} ⊂ T × C.
Note that Σ is open and nonempty because (0, p) ∈ Σ. Let B denote the space parameterizing
the projective spaces P(Ext1(O(K + p′),Tt)). Since Σ is irreducible and the fibers of B → Σ are
irreducible of the same dimension, it follows that B is irreducible.

Let Bs be the nonempty open subset of B parameterizing stable vector bundles, and let Ψ : Bs →
UC(r, d) denote the canonical rational map. The general element (t, p′) ∈ Σ has h1(Tt) = 0, Tt

stable, and Tt = Fm for some m ∈ M. Thus the general element of Ψ(Bs) comes from an exact
sequence

0→ Tt → E′ → O(K + p′)→ 0
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with h1(Tt) = 0. Since h1(O(K+p′)) = 0, we must have h1(E′) = 0. Thus E′ is in Φ(Ps)∩N0
C(r, d).

In particular, E is in the closure of Φ(Ps) ∩N0
C(r, d), which we have seen is irreducible. Since the

general element of any irreducible component is of the form (14) by Lemma 4.10, it follows that
N0

C(r, d) is itself irreducible. �
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